
Proc. of 16th NIST-NCSC National Computer Security Conference, Baltimore, MD,

September 20-23, 1993, pages 39-52.

REFERENTIAL INTEGRITY IN

MULTILEVEL SECURE DATABASES

Ravi S. Sandhu and Sushil Jajodia1

Center for Secure Information Systems
&

Department of Information and Software Systems Engineering
George Mason University, Fairfax, VA 22030-4444

Abstract This paper studies referential integrity in multilevel relations with element-level labeling.
Our principal contribution is resolution of an impasse left by previous work in this area. We show
that the previous work leaves us with a choice of either accepting referential ambiguity, or severely
curtailing the modeling power of multilevel relations. We then show how to escape this impasse by
eliminating entity polyinstantiation, while retaining element polyinstantiation (as an option). We
also discuss how entity polyinstantiation can be securely eliminated.

Keywords: multilevel secure databases, referential integrity, polyinstantiation

1 INTRODUCTION

Referential integrity is an important component of the classical relational data model [4]. It is
concerned with references from one relation to another. The principal motivation for referential
integrity is to prevent dangling references across relations, such as when an employee is assigned
to a non-existent department. Consideration of referential integrity in multilevel relations leads to
the realization that it can result in signaling channels for leakage of secret information [3, 6, 7]. A
multilevel secure relational model must cope with the possibility of these channels.

The central point of this paper is that prior work on referential integrity has left us with a choice
of two undesirable alternatives. We either have referential ambiguity, which results in confusion
about the meaning of data in relations; or we have serious limitations on the expressive power of
multilevel relations, such as the inability to classify a relationship between unclassi�ed entities.

Our principal contribution in this paper is to show how this unacceptable impasse can be resolved
by building upon the distinction between entity and element polyinstantiation. We argue that
entity polyinstantiation is so contrary to referential integrity that it must be eliminated. We also
demonstrate how entity polyinstantiation can be easily prevented, by means of the usual integrity
constraints in Database Management Systems. On the other hand element polyinstantiation can be
tolerated if it is required for purpose of cover stories, or some similar reason. In other words, element
polyinstantiation can be available as an option as needed; whereas entity polyinstantiation should
be eliminated in the data model. (Note that element polyinstantiation can be securely prevented
using the technique of [20], if it is not needed in a particular application.)

The paper is organized as follows. Section 2 de�nes a model for multilevel relations with el-
ement level labeling. In this section only individual relations are considered. Section 3 discusses

1This work was partially supported by the U.S. Air Force, Rome Laboratory under the contract # F30602-92-C-
0002. We are indebted to Joe Giordano for his support and encouragement which made this work possible.

c
 1993 Ravi S. Sandhu and Sushil Jajodia

the semantics of polyinstantiation, including the important distinction between entity and element
polyinstantiation. Some of the more subtle aspects of the de�nitions of section 2 are also discussed.
Section 4 reviews prior work on referential integrity in multilevel relations, which leaves us in the
impasse mentioned above. Section 5 describes how to resolve this impasse by eliminating entity
polyinstantiation. Section 6 concludes the paper.

2 MULTILEVEL RELATIONAL MODEL

In this section, we give the basic de�nitions and assumptions used with multilevel relations. Our
initial focus is on individual relations considered in isolation. Consideration of referential integrity,
which involves two relations, is deferred until sections 4 and 5. The de�nitions and properties
for multilevel relations given here are conceptually simpler, and di�erent in important ways, as
compared to previous work on element-level labeling [6, 11, 12, 13, 15, 16, 17, 19, 20]. The most
signi�cant di�erence is the requirement that there can be at most one tuple in each access class
for a given entity. This gives us the simplicity of tuple-level labeling, combined with the
exibility
of element-level labeling. There are also some other subtle di�erences in the precise formulation of
various properties.

The reader is assumed to be familiar with basic concepts of relational database theory. In analogy
to the usual de�nition of a relation, a multilevel relation consists of the following two parts.

De�nition 1 [RELATION SCHEME] A state-invariant multilevel relation scheme which is de-
noted by R(A1; C1; A2; C2; : : : ; An; Cn; TC), where each Ai is a data attribute2 over domainDi, each
Ci is a classi�cation attribute for Ai, and TC is the tuple-class attribute. The domain of Ci is
speci�ed by a range [Li;Hi], Hi � Li, which de�nes a sub-lattice of access classes ranging from Li
up to Hi. 2

De�nition 2 [RELATION INSTANCES] A collection of state-dependent relation instances,
each of which is denoted by Rc(A1; C1; A2; C2; : : : ; An; Cn; TC); one for each access class c in the
given lattice. Each instance is a set of distinct tuples of the form (a1; c1; a2; c2; : : : ; an; cn; tc) where
each ai 2 Di and ci 2 [Li;Hi], or ai = null and ci � Hi; and tc � lubfci : i = 1 : : :ng.3 Note that
ci must be de�ned even if ai is null, i.e., a classi�cation attribute cannot be null. 2

We assume that there is a user-speci�ed apparent primary key AK consisting of a subset of the
data attributes Ai. In general AK will consist of multiple attributes. We also assume that the
relation scheme is itself unclassi�ed (or, more generally, classi�ed at the greatest lower bound of
Li, i = 1 : : :n). A tuple whose tuple class is c is said to be a c tuple. (Similarly, a subject whose
clearance is c is said to be a c subject.)

We now list four integrity requirements which we feel must be satis�ed by all multilevel relations.
We call these the core integrity properties. We use the notation t[Ai] to mean the value corresponding
to the attribute Ai in tuple t, and similarly for t[Ci] and t[TC].

2In many cases it is useful to have an Ai represent a collection of uniformly classi�ed data attributes. This
extension requires straightforward modi�cations to our statements in this paper, which are all formulated in terms of
the Ai's being individual data attributes.

3Note that in previous work [6, 11, 12, 13, 15, 16, 17, 19, 20] it has generally been required that tc = lubfci : i =
1 : : : ng. The main reason for relaxing this requirement to tc � lubfci : i = 1 : : : ng is to allow a c-subject to specify
the classi�cation of individual attributes in a c-tuple. For example, let M1 and M2 be incomparable labels whose least
upper bound is S and greatest lower bound is U. We should have some means of allowing a S-subject to instantiate
a S tuple whose individual classi�cation attributes are at, say, U, M1, and M2. Careful consideration of the update
semantics in such situations, leads to the conclusion that a S-subject should be able to instantiate a S tuple, even if
the least upper bound of the individual classi�cation attributes turns out to be less than S.

Property 1 [Entity Integrity] Let AK be the apparent primary key of R. A multilevel relation
R satis�es entity integrity if and only if for all instances Rc and t 2 Rc

1. Ai 2 AK) t[Ai] 6= null,

2. Ai; Aj 2 AK) t[Ci] = t[Cj] (i.e., AK is uniformly classi�ed), and

3. Ai 62 AK) t[Ci] � t[CAK] (where CAK is de�ned to be the classi�cation of the apparent
primary key). 2

The �rst requirement is exactly the de�nition of entity integrity from the standard relational model,
and ensures that no tuple in Rc has a null value for any attribute in AK. The second requirement
says that all attributes in AK have the same classi�cation in a tuple. This will ensure that AK is
either entirely visible, or entirely null at a speci�c access class c. The �nal requirement states that in
any tuple the class of the non-AK attributes must dominate CAK. This rules out the possibility of
associating non-null attributes with a null primary key. Property 1 is identical to the entity integrity
property of SeaView [17].

Notation. In order to simplify our notation, we will henceforth use A1 as synonymous to AK,
i.e., A1 and AK both denote the apparent primary key.

The next property is concerned with consistency between relation instances at di�erent access
classes. It requires that at every access class c, exactly those tuples whose access class is dominated
by c are visible.

Property 2 [Inter-Instance Integrity] A multilevel relation R satis�es the inter-instance in-
tegrity property if and only if for all c0 � c we have Rc0 = ft 2 Rc j t[TC] � c0g. 2

Thus, for example, a TS-subject will see the entire relation given in �gure 1, while a C-subject will
see the �ltered instance given in �gure 2. Let us denote the relation between Rc0 and Rc described in
property 2 by Rc0 = �(Rc; c

0), where � is called the �lter function. It is evident that �(Rc; c) = Rc,
and �(�(Rc; c

0); c00) = �(Rc; c
00) for c � c0 � c00; as one would expect from the intuitive notion of

�ltering.

The formulation of �ltering given here is simpler than the de�nition given in [11, 13, 15] (and
subsequently adopted by SeaView [17]). The main di�erence is that the null-subsumption property
of [11, 13, 15] is no longer being required (principally because the null-integrity property of [11, 13, 15]
has been dropped). In the formulation given here null values require no special treatment from a
security viewpoint.

An important consequence of the inter-instance integrity property is that it allows instances such
as shown in �gure 3. Note that there is a C tuple whose key class is U, but the key value (and class)
do not occur in any U tuple. U subjects will see an empty relation in this case, as indicated in
�gure 4. We will see in section 5 that this phenomenon has signi�cant, and bene�cial, implications
for referential integrity. Contrast �gure 3 with the instance shown in �gure 5 (with the Unclassi�ed
view shown in �gure 6). With our de�nition of inter-instance integrity both �gures 3 and 5 are valid
Con�dential instances of SOD, but they are semantically di�erent.4 We will return to consideration
of this issue in section 5.

Next, we have the following polyinstantiation integrity constraint which prohibits polyinstantia-
tion within a single access class.

Property 3 [Polyinstantiation Integrity (PI)] A multilevel relation R is said to satisfy polyin-
stantiation integrity (PI) if and only if for every Rc we have for all Ai that A1; C1; Ci ! Ai. 2

4Note that with prior de�nitions of inter-instance integrity [11], which include null-subsumption, the closest one
can get to these instances is to have the C instance of �gure 3 with corresponding U instance of �gure 6.

SHIP OBJ DEST TC

Enterprise U Exploration U Talos U U
Enterprise U Mining C Sirius C C
Enterprise U Spying S Rigel S S
Enterprise U Coup TS Orion TS TS

Figure 1: A multilevel relation SOD

SHIP OBJ DEST TC

Enterprise U Exploration U Talos U U
Enterprise U Mining C Sirius C C

Figure 2: Con�dential view of �gure 1

SHIP OBJ DEST TC

Enterprise U Mining C Sirius C C

Figure 3: Another Con�dential Instance of SOD

SHIP OBJ DEST TC

Figure 4: Unclassi�ed view of �gure 3

SHIP OBJ DEST TC

Enterprise U null U null U U
Enterprise U Mining C Sirius C C

Figure 5: Yet Another Con�dential Instance of SOD

SHIP OBJ DEST TC

Enterprise U null U null U U

Figure 6: Unclassi�ed view of �gure 5

Starship Objective Destination TC

Enterprise U Exploration U Talos U U
Enterprise U Spying U Rigel S S

Figure 7: Violation of Polyinstantiation Integrity

This property stipulates that the user-speci�ed apparent key A1, in conjunction with the classi�-
cation attributes C1 and Ci, functionally determines the value of the attribute Ai. In other words
the real primary key of the relation is A1; C1; C2; : : : ; Cn. This formulation of PI was �rst proposed
in [11].5 The e�ect of polyinstantiation integrity is to rule out instances such in �gure 7, where there
are two values labeled U for the Objective attribute of the Enterprise.

Finally, we introduce the fourth integrity property, which was �rst identi�ed in [19]. The intuitive
idea is that every entity in a relation can have at most one tuple for every access class.6 The
requirement is formally as follows.

Property 4 [PI-tuple-class] R satis�es tuple-class polyinstantiation integrity if and only if for
every instance Rc, (8Ai 62 A1)[A1; C1; TC ! Ai]. 2

To appreciate the motivation for PI-tuple-class consider the instance SODU given in �gure 8. Let
Starship be the apparent key of this relation. Eight instances of SODS are shown in �gure 9. All
these instances of SODS are consistent with SODU of �gure 8 with respect to the inter-instance
integrity property. In other words, if tuples with TC = S are removed from any of the eight SODS

instances we are left with the single tuple of the SODU instance. Moreover, all eight instances of
SODS satisfy the entity integrity and polyinstantiation integrity properties. Thus any of these eight
instances are acceptable under properties 1, 2 and 3.

It is clear that instances 2, 3 and 4 of �gure 9 have a much simpler interpretation than instances
5, 6, 7 and 8. The PI-tuple-class property formalizes this intuitive distinction by requiring that
there be at most one tuple for the Enterprise at each access class. Instances 2, 3 and 4 have exactly
one S tuple for the <Enterprise;U>, in addition to the single U tuple. The U tuple is then easily
interpreted to denote a cover story with respect to the S tuple. Instances 5, 6, 7 and 8 are in violation
of PI-tuple-class because they all have two or more tuples with tuple class S which have the same
apparent key and key class (i.e., <Enterprise;U>).

Polyinstantiation integrity (or PI) and PI-tuple-class are independent properties. Instances 5, 6,
7 and 8 of �gure 9 illustrate relation instances which satisfy PI but not PI-tuple-class. The instance
of SODS given in �gure 10 shows how PI-tuple-class can be satis�ed while PI is violated.

We regard properties 3 and 4 as the formal de�nition of the informal notion of A1 as the user-
speci�ed apparent primary key. Note that for single level relations C1 and Ci will be equal to
the same constant value in all tuples. In this case property 3 amounts to saying A1 ! Ai, which
is precisely the de�nition of primary key in standard relational theory. Similarly, property 4 also
reduces to A1 ! Ai for single-level relations.

3 SEMANTICS OF POLYINSTANTIATION

In the previous section we have given a formal model (albeit without referential integrity) for multi-
level relations with element-level labeling. In this section we consider the semantic interpretation of
polyinstantiation in these relations. The essential points can be illustrated in context of the instance
of �gure 11. This instance is permitted by the integrity properties of section 2. It exhibits two dis-
tinct forms of polyinstantiation which we call entity polyinstantiation and element polyinstantiation.

Entity polyinstantiation arises when there are two tuples with the same value of the apparent
primary key, but with di�erent values of the key class. This is illustrated in �gure 11 where the

5It should be noted that the SeaView de�nition of polyinstantiation integrity [16, 17] requires property 3, but in
addition requires a multi-valued dependency property which has the undesirable consequence of introducing spurious
tuples in the multilevel relation [11].

6The formulation of this property in [19] disclosed some problems with this intuitive idea, which have been carefully
avoided in the present paper. We also note that the behavior of multilevel relations in LDV [10] essentially requires
this property, although the precise formalization and detailed semantics are somewhat di�erent.

Starship Objective Destination TC

Enterprise U Exploration U Talos U U

Figure 8: An instance SODU

No. Starship Objective Destination TC

1 Enterprise U Exploration U Talos U U

2 Enterprise U Exploration U Talos U U
Enterprise U Spying S Talos U S

3 Enterprise U Exploration U Talos U U
Enterprise U Exploration U Rigel S S

4 Enterprise U Exploration U Talos U U
Enterprise U Spying S Rigel S S

5 Enterprise U Exploration U Talos U U
Enterprise U Exploration U Rigel S S
Enterprise U Spying S Rigel S S

6 Enterprise U Exploration U Talos U U
Enterprise U Spying S Talos U S
Enterprise U Spying S Rigel S S

7 Enterprise U Exploration U Talos U U
Enterprise U Spying S Talos U S
Enterprise U Exploration U Rigel S S

8 Enterprise U Exploration U Talos U U
Enterprise U Spying S Talos U S
Enterprise U Exploration U Rigel S S
Enterprise U Spying S Rigel S S

Figure 9: Eight instances of SODS

Starship Objective Destination TC

Enterprise U Exploration U Talos U U
Enterprise U Spying U Rigel S S

Figure 10: An instance of SODS satisfying PI-tuple-class but not PI

Starship Objective Destination TC

Enterprise U Exploration U Talos U U
Enterprise U Spying S Rigel S S
Enterprise S Attack S Sirius S S

Figure 11: Entity and Element Polyinstantiation

Starship Objective Destination TC

Enterprise U null U null U U
Enterprise U Spying S Rigel S S

Figure 12: An S instance of SOD

Starship Objective Destination TC

Enterprise U null U null U U

Figure 13: The U view of �gure 12

Starship Objective Destination TC

Enterprise U Spying S Rigel S S

Figure 14: Another S instance of SOD

Starship Objective Destination TC

Figure 15: The U view of �gure 14

third tuple has the same apparent key value (i.e., Enterprise) as the �rst (or second) tuple, but the
key class in the third tuple (i.e., S) is di�erent from the key class in the �rst (or second) tuple (i.e.,
U). The interpretation is that in this case there are two Starships, the < Enterprise;U> and the
< Enterprise; S>. In other words the two S-tuples pertain to two distinct real world entities. In
contrast, the top two tuples in �gure 11 refer to the same starship < Enterprise;U>; the S-tuple
gives the classi�ed values for the Objective and Destination attributes, whereas the U-tuple gives
the unclassi�ed cover story for both attributes. The S-tuple for < Enterprise; S > pertains to a
completely di�erent Starship whose existence is not known at the unclassi�ed level. In short, entity
polyinstantiation is interpreted by asserting that a real-world entity is identi�ed in the database by
the apparent key and key class.

Element polyinstantiation, on the other hand, arises when there are two tuples with the same
value of the apparent primary key, and with the same value of the key class. This is illustrated in
�gure 11 by the �rst two tuples. The interpretation, in this case, is that both tuples refer to the
same Starship in the real world, viz., the <Enterprise;U>. The U-tuple gives the unclassi�ed values
for the Objective and Destination attributes, whereas the S-tuple gives the classi�ed values for these
attributes. In short, element polyinstantiation is interpreted by asserting that the same real-world
entity has di�erent values for its attributes at di�erent access classes.

Figures 12 through 15 further illustrate a subtle aspect of the inter-instance property, brie
y
alluded to in the previous section. Figure 12 shows element polyinstantiation for a single Starship
called Enterprise, whose key class is U. Even though the values of the Objective and Destination
attributes in the U tuple are null, we will consider this to be element polyinstantiation because
non-null values have been given in the S tuple. The corresponding U instance is shown in �gure 13.
Now consider the S instance of SOD shown in �gure 14. This instance is allowed by the integrity
properties of the previous section. The corresponding U instance is shown in �gure 15. Note that
even though the S tuple of �gure 14 has a component labeled U, the U instance is completely empty.

What interpretation are we to give to the fact that the Starship name is labeled U in �gure 14?
We will understand such a situation to mean that the Enterprise may become visible at the U level,

even though currently it is not. The implication is that if a U tuple for the <Enterprise;U> does
come about in SOD, it is going to refer to exactly the same real-world starship that the existing S
tuple refers to.

We will see, in section 5, that this interpretation turns out|rather unexpectedly|to be impor-
tant for certain aspects of referential integrity. It should be kept in mind that, if the semantics of
the application dictate that the instance of �gure 14 is not allowed we can prevent its occurrence
by the usual integrity constraints in relational systems. The point is that our data model does not
inherently rule out this instance, as is done by previous data models [6, 11, 12, 13, 15, 16, 17, 19, 20]
in this area.

4 PRIOR WORK ON REFERENTIAL INTEGRITY

In this section we review previous work on referential integrity and point out its weaknesses. The
notion of a foreign key relates two relations: a referencing relation, say R, and a referenced relation,
say Q. A foreign key FK of R is declared to be one or more attributes of R which collectively
reference the primary key PK of Q. The number of attributes in FK and PK, as well as their
domains (such as number or character string), must be identical for a valid declaration of a foreign
key.

The �rst requirement for foreign keys is as follows.

Property 5 [Foreign Key Integrity] Let FK be a foreign key of the referencing relation R. A
multilevel relation R satis�es foreign key integrity if and only if for all instances Rc and t 2 Rc

1. Either (8Ai 2 FK)[t[Ai] = null] or (8Ai 2 FK)[t[Ai] 6= null].

2. Ai; Aj 2 FK) t[Ci] = t[Cj] (i.e., FK is uniformly classi�ed). 2

The �rst part of this property arises from standard relations. The motivations for the second part
of this property are similar to those for the uniform classi�cation of apparent primary keys in the
entity integrity property.

The foreign key property by itself is not su�cient. In standard relations, the referential integrity
property precludes the possibility of dangling references from R to Q. In other words a non-null
foreign key must have a matching tuple in the referenced relation. To avoid signaling channels that
arise due to upward (or sideways) references, SeaView originally proposed the following formulation
of referential integrity for multilevel relations [6].

Property 6 [Referential Integrity (SeaView I)] Let FK be a foreign key of the referencing
relation R. Let Q be the referenced relation, with apparent primary key AK. R and Q satisfy
referential integrity if and only if for all instances Rc and Qc occurring together, and for all t 2 Rc

such that t[FK] 6= null, there exists q 2 Qc such that t[FK] = q[FK]^ t[CFK] � q[CAK]. 2

Unfortunately, the above formulation results in referential ambiguity. The problem of referential
ambiguity was �rst noted by Gajnak [9]. It is illustrated in �gures 16(a), where SOD is as before,
and CAPTAIN is the apparent primary key of the CS relation. In this example SHIP is a foreign
key from CS to SOD. In the CS relation, at the U level Kirk has not been assigned to any starship,
while at the S level Kirk's assignment is to the Enterprise. However, due to entity polyinstantiation,
there are two starships called Enterprise in SOD. It is therefore ambiguous as to which one Kirk is
assigned to (or perhaps he is captain of both).

Gajnak's observations led SeaView researchers to modify the above referential integrity property
to require equality of the key classi�cations [16, 17], as follows.

SHIP OBJ DEST TC

Enterprise U Exploration U Talos U U
Enterprise S Spying S Rigel S S

CAPTAIN SHIP TC

Kirk U null U U
Kirk U Enterprise S S

(a)

SHIP OBJ DEST TC

Enterprise U Exploration U Talos U U
Enterprise U Spying S Rigel S S

CAPTAIN SHIP TC

Kirk U null U U
Kirk U Enterprise S S

(b)

Figure 16: Foreign key references from CS to SOD

Property 7 [Referential Integrity (SeaView II)] Let FK be a foreign key of the referencing
relation R. Let Q be the referenced relation, with apparent primary key AK. R and Q satisfy
referential integrity if and only if for all instances Rc and Qc occurring together, and for all t 2 Rc

such that t[FK] 6= null, there exists q 2 Qc such that t[FK] = q[FK]^ t[CFK] = q[CAK]. 2

This formulation takes care of referential ambiguity, but has the unfortunate consequence of
curtailing the modeling power of multilevel relations. For example, the instance of �gure 16(b) is
not valid anymore. However, there is nothing semantically incorrect with these relations. We are
simply trying to keep the assignment of Kirk to the Enterprise secret, whereas the existence of the
Enterprise is unclassi�ed. If we store information about starships and about assignment of captains
in two di�erent relations, the SeaView II rule will allow us to keep the assignment of Kirk secret only
if it is to a secret starship. We cannot classify the assignment of Kirk to an unclassi�ed starship!

5 PROPOSED SEMANTICS OF REFERENTIAL INTEGRITY

Prior work on referential integrity in multilevel relations leaves us in an impasse. We either have ref-
erential ambiguity or substantial loss of modeling power. Since neither of these is a viable alternative,
we must �nd some means of getting around this impasse.

The problem of referential ambiguity arises due to entity polyinstantiation. Therefore our pro-
posal is to retain the original SeaView referential integrity property (i.e., property 6) which allows
downward references,7 and disallow entity polyinstantiation. Let us see how entity polyinstantiation
can be securely prevented.8 We distinguish two kinds of relations for this purpose, as follows.

7We will see later in this section that property 6 needs to be slightly modi�ed to work correctly.
8Note that element polyinstantiation can also be securely prevented using the technique of [20]. Our proposal is to

� Atomic Relations: In these relations the apparent primary key AK does not contain a foreign
key as a proper subset of the attributes of AK.

� Composite Relations: In these relations the apparent primary key AK does contain a foreign
key as a proper subset of the attributes of AK.

These two cases are respectively discussed in the following two subsections.

5.1 Prevention of Entity Polyinstantiation in Atomic Relations

The basic technique for preventing entity polyinstantiation in atomic relations is to partition the
domain of the primary key among the various security classes possible for the primary key [14].9

For our SOD example, we can introduce a new attribute, called Starship#. Whenever a new tuple
is inserted, we enforce the requirement that all unclassi�ed Starships are numbered between 1 and
1,000, all con�dential Starships are numbered between 1,001 and 2,000, and so on.

In a SQL-like data de�nition language, the modi�ed SOD schema could be created as follows:

CREATE TABLE SOD

(Starship# SMALL INTEGER NOT NULL [U:TS]

Starship CHAR(15) NOT NULL [U:TS]

Objective CHAR(15) {U, TS},

Destination CHAR(20) [U:TS],

Primary Key (Starship#),

CHECK (Subject Access class = 'U' AND Starship# BETWEEN 1 AND 1000),

CHECK (Subject Access class = 'C' AND Starship# BETWEEN 1001 AND 2000),

CHECK (Subject Access class = 'S' AND Starship# BETWEEN 2001 AND 3000),

CHECK (Subject Access class = 'TS' AND Starship# BETWEEN 3001 AND 4000));

The notation [L:H] speci�es a range of security classes with lower bound L and upper bound
H. The notation fX,Y,Zg enumerates the allowed values for the security class as one of X, Y or Z.
Here, the domain of the security class of the apparent primary key Starship# has been speci�ed as
a range with a lower bound of U and an upper bound of TS. However, the domain of the Starship#
has been partitioned across these security classes.

It should be noted that con�dentiality does not depend on correct partitioning of the key space
by the integrity enforcement mechanism of the Database Management System (DBMS). If this
mechanism fails, or is deliberately malicious due to Trojan Horse infection, the integrity properties
will fail but there will be no leakage of information. To fully substantiate this statement, we would
need to give a kernelized implementation of the DBMS, i.e., an implementation which does not
use subjects exempted from the mandatory controls of the underlying multilevel secure operating
system. Description of such an implementation is outside the scope of this paper.

5.2 Prevention of Entity Polyinstantiation in Composite Relations

Consider the relations shown in �gure 17. SOD is the familiar relation, with apparent primary key
SHIP. Let CAPTAIN be the apparent primary key of the relation CR. Now consider the relation
CSH, some of whose instances are illustrated in �gure 18. The apparent primary key of CSH consists
of the attributes CAPTAIN and SHIP. By the entity integrity property (property 1) both attributes
must be uniformly classi�ed. Hence only one classi�cation is shown for these two attributes. Suppose

eliminate entity polyinstantiation as part of the data model, but keep element polyinstantiation as a possible option.
9This is analogous to the manner in which static resource allocation across security classes eliminates covert

channels which arise due to dynamic resource allocation in multilevel Operating Systems.

CAPTAIN is a foreign key from CSH to CR, and SHIP is a foreign key from CSH to SOD. For the
rest of this discussion, assume that SOD and CR are as shown in �gure 17.

A valid instance of CSH is shown in �gure 18(a). The top two tuples in �gure 18(a) correspond
to the same entity, viz., <Kirk;Enterprise;U>, and indicate the occurrence of element polyinstan-
tiation. The interpretation is that Kirk is assigned to the Enterprise for 15 hours at the U level,
and for 10 hours at the S level. The bottom three tuples of �gure 18(a) correspond to three distinct
entities, all of which are secret. These three entities represent the assignment of Kirk to Voyager,
and the assignments of Spock to the Enterprise and to the Voyager. These entities are labeled S
because each one of them references a secret entity in SOD or CR or both. Since only downward
references are allowed, by property 7 these foreign keys must be labeled S.

Figures 18(b) and (c) illustrate the phenomenon of entities which are not currently visible at a
lower level, but may become visible in the future. This situation was encountered in context of the
inter-instance property in section 2, and was also discussed in the latter part of section 3. We now
see that this phenomenon is useful in relations which relate existing entities. The single S tuple
in �gure 18(b) assigns Kirk to the Enterprise with a secret load of 10 hours/week. It is possible
that later Kirk is assigned to the Enterprise with a unclassi�ed load of 15 hours/week, as shown in
�gure 18(c). Note that in going from �gure 18(b) to (c), from a S subject's point of view, we are
not instantiating another entity but merely making an unclassi�ed entity visible at the unclassi�ed
level. From a U subject's point of view, we are instantiating another entity at the U level, but this
entity may or may not have previously instantiated at a higher level.

Figures 18(d) and (e) illustrate the incorrect approach to handling the situation of �gures 18(b)
and (c). In this case the S tuple in �gure 18(d) is for the entity <Kirk;Enterprise; S>. This opens
up the possibility of entity polyinstantiation as shown in �gure 18(e). References from some other
relation to <Kirk;Enterprise > in CSH will therefore be ambiguous. In such cases we must make
sure that we do not over classify the apparent primary key of CSH.

5.3 Referential Integrity Property

Based on our discussion we recommend going back to the original formulation of the SeaView
referential integrity property (i.e., property 6). We need to change this property slightly to avoid
references to entities that are potentially visible at level c, but are currently only instantiated at
levels above c. This requires the additional condition, t[CFK] � q[TC], relative to property 6, giving
us the following de�nition.

Property 8 [Referential Integrity] Let FK be a foreign key of the referencing relation R. Let
Q be the referenced relation, with apparent primary key AK. R and Q satisfy referential integrity if
and only if for all instances Rc and Qc occurring together, and for all t 2 Rc such that t[FK] 6= null,
there exists q 2 Qc such that t[FK] = q[FK]^ t[CFK] � q[CAK] ^ t[CFK] � q[TC]. 2

With this de�nition, and with elimination of entity polyinstantiation, we will have eliminated refer-
ential ambiguity while retaining the expressive power to allow classi�cation of relationships among
unclassi�ed entities. Elimination of entity polyinstantiation can be formally expressed as follows.

Property 9 [No Entity Polyinstantiation] A multilevel relation R is said to satisfy the \no
entity polyinstantiation" property if and only if for every Rc we have A1 ! C1. 2

6 CONCLUSION

In this paper we have shown that previous work on referential integrity leaves us with a choice
of either accepting referential ambiguity or severely curtailing the modeling power of multilevel

SHIP OBJ DEST TC

Enterprise U Exploration U Talos U U
Voyager S Spying S Rigel S S

CAPTAIN RANK TC

Kirk U Admiral U U
Spock S General S S

Figure 17: Relations SOD and CR

CAPTAIN SHIP HOURS/WEEK TC

Kirk Enterprise U 15 U U
Kirk Enterprise U 10 S S
Kirk Voyager S 30 S S
Spock Enterprise S 20 S S
Spock Voyager S 15 S S

(a)

CAPTAIN SHIP HOURS/WEEK TC

Kirk Enterprise U 10 S S

(b)

CAPTAIN SHIP HOURS/WEEK TC

Kirk Enterprise U 15 U U
Kirk Enterprise U 10 S S

(c)

CAPTAIN SHIP HOURS/WEEK TC

Kirk Enterprise S 10 S S

(d)

CAPTAIN SHIP HOURS/WEEK TC

Kirk Enterprise U 15 U U
Kirk Enterprise S 10 S S

(e)

Figure 18: Foreign key references from CSH to SOD and CR

relations. We have shown how to escape this impasse by eliminating entity polyinstantiation, while
retaining element polyinstantiation (as an option).

In future work, one should de�ne a formal update semantics for relations which satisfy the
core integrity properties of section 2, and the referential integrity and \no entity polyinstantiation"
properties of section 5. Completeness and soundness of the semantics should be proved. It is also
important to develop correct decomposition and recovery algorithms for a kernelized architecture
(i.e., an architecture in which no subject is exempted from the simple-security or star-properties)
which give these semantics.

References

[1] \Multilevel Data Management Security," Committee on Multilevel Data Management Security,
Air Force Studies Board, National Research Council, Washington, DC (1983).

[2] Bell, D.E. and LaPadula, L.J. \Secure Computer Systems: Uni�ed Exposition and Multics
Interpretation." MTR-2997, MITRE (1975).

[3] Burns, R.K. \Referential Secrecy." IEEE Symposium on Security and Privacy, Oakland, Cali-
fornia, May 1990, 133-142.

[4] Date, C.J. An Introduction to Database Systems. Volume II, Addison-Wesley, (1983).

[5] Denning, D.E., Lunt, T.F., Schell, R.R., Heckman, M., and Shockley, W.R. \A Multilevel
Relational Data Model." Proc. IEEE Symposium on Security and Privacy, 220-234 (1987).

[6] Denning, D.E., Lunt, T.F., Schell, R.R., Shockley, W.R. and Heckman, M. \The SeaView
Security Model." Proc. IEEE Symposium on Security and Privacy, 218-233 (1988).

[7] Doshi, V.M. and Jajodia, S. \Referential Integrity in Multilevel Secure Database Management
Systems." Proceedings of the IFIP TC 11 8th International Conference on Information Security,
(1992).

[8] Doshi, V.M. and Jajodia, S. \Enforcing Entity and Referential Integrity in Multilevel
Databases." Proc. 15th NIST-NCSC National Computer Security Conference, Baltimore, MD,
October 1992, pages 134-143.

[9] Gajnak, G.E. \Some Results from the Entity-Relationship Multilevel Secure DBMS Project."
Aerospace Computer Security Applications Conference, 66-71 (1988).

[10] J. Thomas Haigh, Richard C. O'Brien, and Daniel J. Thomsen, \The LDV Secure Relational
DBMS Model." Database Security IV: Status and Prospects, S. Jajodia and C. E. Landwehr
(editors), North-Holland, 1991, pages 265-279.

[11] Jajodia, S. and Sandhu, R.S. \Polyinstantiation Integrity in Multilevel Relations." Proc. IEEE
Symposium on Security and Privacy, Oakland, California, May 1990, pages 104-115.

[12] Jajodia, S. and Sandhu, R.S. \Polyinstantiation Integrity in Multilevel Relations Revisited."
Database Security IV: Status and Prospects, Jajodia, S. and Landwehr, C. (editors), North-
Holland, pages 297-307, 1991.

[13] Jajodia, S. , Sandhu, R.S., and Sibley E. \Update Semantics of Multilevel Relations." Proc. 6th
Annual Computer Security Applications Conf., Tucson, AZ, December 1990, pages 103-112.

[14] Jajodia, S. and Sandhu, R.S. \Enforcing Primary Key Requirements in Multilevel Relations,"
Proc. 4th RADC Workshop on Multilevel Database Security, Rhode Island, April 1991.

[15] Jajodia, S. and Sandhu, R.S. \A Novel Decomposition of Multilevel Relations Into Single-Level
Relations." Proc. IEEE Symposium on Security and Privacy, Oakland, California, May 1991.

[16] Lunt, T.F. et al. Secure Distributed Data Views. Volume 1-4, SRI Project 1143, SRI Interna-
tional (1988-89).

[17] Lunt, T.F., Denning, D.E., Schell, R.R., Heckman, M. and Shockley, W.R. \The SeaView
Security Model." IEEE Transactions on Software Engineering, 16(6):593-607 (1990).

[18] Lunt, T.F. and Hsieh, D. \Update Semantics for a Multilevel Relational Database." Database

Security IV: Status and Prospects, Jajodia, S. and Landwehr, C. (editors), North-Holland, pages
281-296, 1991.

[19] Sandhu, R.S., Jajodia, S. and Lunt, T. \A New Polyinstantiation Integrity Constraint for
Multilevel Relations." Proc. IEEE Workshop on Computer Security Foundations, Franconia,
New Hampshire, June 1990, pages 159-165.

[20] Sandhu, R.S. and Jajodia, S. \Honest Databases That Can Keep Secrets." 14th NIST-NCSC

National Computer Security Conference, Washington, D.C., October 1991, pages 267-282.

[21] Sandhu, R.S. and Jajodia, S. \Polyinstantiation for Cover Stories." Proc. European Symposium

on Research in Computer Security, Toulouse, France, November 1992, pages 307-328. Published
as Lecture Notes in Computer Science, Vol 648, Computer Security|ESORICS92 (Deswarte,
Y., Eizenberg, G., and Quisquater, J.-J., editors), Springer-Verlag, 1992.

